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The study of nonlinear magnetosonic waves in a turbulent plasma is extended to 
include the effects of the Hall term. The turbulence and Hall effect are characterized 
by an effective electrical conductivity and an ion gyrofrequency respectively. It is 
shown that the magnetosonic waves are governed by a nonlinear equation which can 
be considered as the generalization of a Korteweg & de Vries (1895) equation with 
dispersion. For a stationary solution two cases are considered in detail: (a)  an un- 
perturbed magnetic field is almost parallel to a wave vector, and ( b )  they are almost 
perpendicular. In the case (a) it  is shown that the presence of the Hall term can lead to 
an oscillatory solution which decays due to the finite conductivity. In the second case 
the Hall effect does not affect the monotonous character of a decaying Taylor-shock 
profile. 

1. Introduction 
Nonlinear hydromagnetic waves play an important role in transport processes in a 

turbulent plasma such as a magnetic neutral sheet (solar flare models, geomagnetic 
tail), in which effects of perturbations with shorter wavelengths should be taken into 
account. Therefore i t  is interesting to study how these effects can influence the 
behaviour of the turbulent plasma. The turbulence itself is described with the help of 
an effective electrical conductivitycreen.A studycarriedout by Sakai (1972)showed that 
the finite conductivity leads eventually to the formation of a dissipative hydro- 
magnetic shock wave. The finite ratio of the ion Larmor radius and the perturbation 
wavelength (kpL) in such a plasma can result in either oscillations of these waves (with 
the Hall effect prevailing over a finite conductivity) or in the flattening of their profiles 
(with a finite conductivity prevailing over the Hall effect). 

In 5 2 we show that such waves are described by the equation which is nothing more 
than the generalization of a Korteweg-de Vries equation with inclusion of a nonlinear 
dispersive term. In $2 we study the steady-state solutions of this equation for two 
cases. First, the unperturbed magnetic field is almost parallel to a wave vector and, 
second, the unperturbed magnetic field is almost perpendicular to a wave vector. 
In 5 4 we discuss the results of calculations. 
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2. Derivation of basic equations governing the hydromagnetic waves in a 
Hall plasma with cell 

We consider nonlinear hydromagnetic waves propagating in a turbulent plasma with 
an effective electrical conductivity ueff (which is present because of micro-instabilities) 
and a finite ratio of the ion Larmor radius and wavelength comparable to  the inverse 
of the magnetic Reynolds number. 

Assuming isothermal character of the plasma we can write the system of MHD 
equations (Granik 1 9 8 0 ~ ) :  

(1)  
- + u . v p + p v . u  aP = 0, 
at 

au 
at 
- + u . Vu + (cx/p) Vp - (l/pc) j x B = 0, 

aB 
at 

V X E + ( l / C ) -  = 0,  (3) 

E + ( l / c ) u  x B - ( l/cef,) j - (mJcpe) j x B = 0, (4) 

VxB-(4n/c) j  = 0, ( 5 )  

V.B = 0, (6) 

where p is the plasma density, u the velocity of the plasma, c the speed of light, e the 
electron charge, mi the ion mass, p the pressure, B the magnetic field, j the current 
density, c: = p / p  the constant speed of sound. I n  the derivation of (4) we neglect the 
effects of electron inertia and the displacement currents because the ion Larmor radius 
is much greater than c/wpe where wpe is the electron plasma frequency (cf. McKenzie 
1971). 

The following study of the problem will be carried out in a dimensionless form. 
For this purpose we introduce the following parameters: 

p = p/po, W ,  = GiLo/cs, t = .fcS/Lo, R, = ~ T V ~ ~ ~ C , L O / C ~ ,  

N\ = 82/47rp0cs, u = ii/cs, B = B/Bo, Gf = e&/mic, } (7) 

r = ?/Lo. 

Here the subscript 0 denotes unperturbed constant parameters, superscript tilde 
means unnormalized parameters, Lo is the characteristic scale length of the variation 
of parameters, M ,  is the magnetic Mach number, R,is the magnetic Reynoldsnumber, 
r is the radius vector, and (3, is the ion gyrofrequency. Performing simplevectoropera- 
tions, we reduce system (1)-(6) with the help o i  (7) to the followingdimensionless form: 

g + u . v p + p v . u  at = 0, (8) 

(9) 
au 
at 

p-+pu.Vu+ Vp+(WA/2)VB2+M$B.VB = 0, 

aB -+u . VB - B .Vu + BV . u - (M2,/wip)curlB. VB + (M2, /w ip )  (B .V)curlB 
at 

- ( . l r f~ /wtp2)  curl B(B . Vp) + (M%/wi p2) B(Vp . curl B) - (l/R,) AB = 0, (10) 

V . B  = 0. (11)  
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Solutions of system (8)-(11) depend on parameters Ap = p  - 1 (density fluctuations), 
l / R m ,  and (M2,/w02. They define respectively the nonlinearity of the problem, the 
dissipation due to the finite conductivity, and the dispersion connected with the finite 
ion gyrofrequency. We consider such a situation when all the above parameters are of 
the comparable order of smallness, i.e. 

AP 1 / R ,  (M!4/wA2 € 9  (12) 

where E is a smallness parameter. As it  was shown by Sakai ( 1972) the typical values of 
E for the type IV burst are 10-1 N 10-3. 

We will study solutions of system (8)-(11) which in the limit of s+O will give 
characteristic nonlinear waves in an ideally conducting plasma without the Hall 
currents (Barnes & Hollweg 1974). Therefore we introduce two new independent 
variables, $(k. r, t) = K .r - wt, 7 = st, k = kL,, 6.~ = $L,/c, are dimensionless wave 
vector and frequency respectively. Using these new variables, we can rewrite system 
(8)-(11)(cf.Sakai 1972) 

Y 

E ~ U ,  - P W U ~  + ~ ( u .  k) U, + kp, + ( M 5 / 2 )  kB$ - Ms(B. k) B, = 0, (14) 

EB , - OJB, + (U . k) B, - (B . k) U, + B(k . u+) - (k2/R,,) Bk+ 

- (M!4/Pwt) (B. k) (k x B,,) + (M5/p2wt)  (B . k) (k x BPI P, = 0, (15) 

k.B, = 0, (16) 
where 

au aB aB a2B aP aP au 
Ut = a P’ B,=-  a7 9 B + = ap,  B,, = w, P7 = at, P, = @’ u, = z. 

To solve system (13)-( 16) we expand all dependent variables around their equilibrium 
state in power series in E :  

p = 1+Epp,+s2p2+ ..., (17) 

u = EU1+E2U2+ ..., (18) 

B = b,+EBI+e2B2+ ..., (19) 

where bo = B,/d,. For the subsequent analysis we transform (14) and (15) into a 
scalar form 
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where, as before, subscripts r and $ denote respective derivatives. We need two mom 
equations which can be easily derived from (14) and ( 15): 

EP[b,.(k xU),l-Pw[bo.(k xu)$l+P(u.k)[b,*(k XU)$.] 

- M%(B. k) [b,. (k x B)$] = 0, (23) 

E[bo. (k x B),] - W[b". (k x B ) ~ ]  + (U .k)  [bo. (k x B)*] 

- (B.  k) [b,. (k x u)@]+ (k.u@)[bO. (k x B)] - (M%k2/wip) (B .  k)  (bo.B)H 

-k2/R,[bO.(kx B)H]+(k2Mi/p2~,)(B.k)(bO.B)$~$ = 0. (24) 

It is seen from (16)-(24) that the variables b,. (k x B$), b,. (k x u)+ are of the order €4 
if we take into account (12). This can be explained by the fact that these variables are 
connected with the dispersive Alfvh wave. In the non-dispersive Alfvbn wave they 
are equal to zero (Granik 1980b), and when the dispersion is small ( N €4) they should 
be of the order which follows from ( 1 7 )  and (18). Therefore substituting expressions 
(17)-( 19) into (13), (16), (20)-(22) and equating coefficients of E ,  €4 and c2 to zero, we 
obtain sets of equations for the quantities of respective orders. First, for the order E 

we get 

where 

and 

0 -M2,k2 

- 1  (b,.k) w 

-k2 w 

-(b,.k) 0 w 

Following the usual procedure we can write solutions of (25) as 

u, = RfA$, T), (28) 

A,R = 0. (29) 

LA, = 0. (30) 

where R is a column vector satisfying matrix equation 

Let us introduce a row vector L corresponding to a column vector R 

Using (26) and (29), we can obtain explicit expressions for vectors R and L 
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To find eigenvalues of system (25) ,  we equate det A, to zero which gives us the well- 
known dispersion relation for magnetosonic waves in an ideally conducting plasma 
without Hall currents (McKenzie 1971) 

OJ* - 02k2( 1 + N:) + Ms k2(b. k)2 = 0. (32) 

From the equations corresponding to the order 6 we have 

where 
(33) 

(34) 

Because det A,+ 0 we can find using (34)-(36) explicit expressions for elements of 
vector column U, as functions of b, . B,, 

bo.(kxBl) = - (Mdk)2(bo'k)2 ( w / w i )  (b,.B,)@. 
w2 - (b, . k)'Mi (37) 

Relation (37) permits us to write equations corresponding to the second order in E 

in the form 
= D3, (38) 

where column vectors U, and D, are 

P2 

Us=[  bOJJ2 u2'k 1, D 3 =  [ I ,  
bO.B2 

b,xk b,xk k x  (box k) 
B, = (B1.-) Jboxkl m +(bo*B1)k2(kx (b,xk)(2' (39) 
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Performing simple vector operations and using (37), we obtain 

Bf = ( l /k2- (bo. k)2){[(M2A h+/w'- (boa k)'WA) (w/wJ (bo- B1)+]'+ k2(bo. B,)'}. 
If we operate on both parts of (38) with the row vector L and use (30) then the com- 
patibility condition for (25) and (38) gives 

LD, = 0. (40) 

Substituting into (39) expressions for elements of the column vector R from (31) and 
using (38), we obtain the following equation for the density: 

where a, b, c and d are given by 

k' &-k2 c = -- 
R,2w2-k2(1+2MBg)' 

k2(bo. k)2 w2 - ka 
d = -a$% ~2-(b~.k)~M~2wa-k2(l+MB~)' 

Coefficients a ,  b,  c and d are determined with the help of dispersion equation (32). 
Equation (41) is the generalization of a Korteweg-de Vries equation 

77 + "l?lqt+ a2r]w+ "37$$$ = O* (46) 

In  our equation there is an additional nonlinear term bpl+p19ppresenting a nonlinear 
effect of a finite ion gyrofrequency on density fluctuations. 

3. Solutions of equation (41) 

the variable 
Here we consider only stationary solutions to equation (36). Therefore we introduce 

z = $- Mo7, (47) 

where M ,  is the Mach number of a wave front. Then equation (41) is 

with boundary conditions derived from the assumption of undisturbed upstream and 
downstream flows (Johnson 1969) 

pl+o, z- too ;  p1+2M0/a, z+-m. (49) 

If we use substitution y = dpl/dz then equation (48) is easily transformed into the 
well-known Abel equation of the second type 

YY' + (b/2d) Y2 + (c/d) Y + (a/2d) P: - (Mo/d)  P1 = 0. (50) 
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The full analysis of the equation (50)  with (49)  is in preparation. Here we study this 

At first, we consider b, 11 k. From dispersion equation (32)  it follows that 
equation partially using results of the continuing work. 

d - M l k 2  = 0.  

But this is nothing more than the Alfvh wave where according to (37)  B, I b, and 
hence p1 = 0. Non-trivial solutions exist only for B, andu,. Using this result it is possible 
to consider the case of a fast magnetoacoustic wave with b, almost parallel to k. 

From (32)  we obtain 

wa = k2WA[i + a/(M: - 1 )  + O(aa)] (51)  

where a = [ 1 - (b,. k)*/ka] < 1. If (B, . b,) - p1 is of the order a2 and a N p2 which is 
compatible with the case of Alfv6n waves (with the analogous scaling of the orders of 
smallness) then we can linearize (48): 

%+(c/d) - -?- (Mo/d)p l  dP = 0, 
dz 

where 

If M I  - 1 > 0 then d < 0.  Therefore for c2 - 4M, Id I < 0 we have expunential damping 
of the oscillating density, rate of which is determined by y. If M I  < 1 then d > 0 and 
c < 0, which means that for bounded p, we have a pure damping. Analogous result is 
true for the case M I  - 1 > 0 (d < 0, c < 0 )  and c2 - 461, Id1 > 0.  These conclusions are 
in full agreement with the phase-plane analysis of (36)  which shows the existence of a 
singular spiral point (or saddle, or node points) depending on the sign of the expression 

Because the above case does not show the formation of a shock wave, it is interesting 
to study the following case: b, is almost perpendicular to k. From (32)  we have for the 
fast magnetoacoustic wave 

~ 2 - 4 M , ( d l .  

wherea, = (b,. k)2. We consider only the fast mode because this mode is the only 
one which does not undergo Landau damping in the direction normal to k (Barnes 
1966). As it is seen from the expressions (42)-(45),  terms connected with the dispersion 
(b  and d )  are of the order a, as compared with the terms connected with the ‘pure’ 
nonlinearity (a) and dissipation (c ) .  Therefore we can expand the solution of (48)  in 

(54)  
power series in a, 

P1 = PlO + a4P11 + - - -  * 
Then for the zeroth order we obtain (cf. Sakai 1972) 

For the first order we have 

kM’ [ cosh-2 (*) In cosh (* - tanh (*)I. (56) 
2( 1 + PA)# m2 214 21cl 4a 214 

PIT. = -B2 
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Here 
c z - ( k 2 / R , ) ( M t / (  1 + M I ) )  + O(a,),  

We used in derivation of (54) condition 

PA01 = &/a. 

As it is seen from (54) in the case of propagation of a shock wave in the Hall plasma 
there is correctional term ( 5 6 )  which tends to flatten the profile of the hydromagnetic 
shock wave but does not change its monotonous character. These facts are also in a 
full agreement with a phase-plane analysis of (36 ) .  The shock-wave front thickness 9 
is determined by the following relation 

where 9 is unnormalized front thickness, 

and (Mo/2lc1)-1 is nothing more than the front thickness for conventional plasma 
(Sakai 1972). 

4. Discussion 
Sakai suggested that the effects of a finite ion gyrofrequency can lead to the dis- 

persive effects in nonlinear MHD waves in a plasma with a finite electrical conductivity. 
His guess that these effects would introduce an additional term dpwt into (35) was 
correct. Moreover, we show that there is one more term bpltplw representing inter- 
action of the plasma density and the pressure variation connected with the Hall effect. 

It is shown in the present study that the consideration of the finite ion gyrofrequency 
in a turbulent plasma with a finite conductivity ce f f  can lead to damped oscillations of 
all quantities. In the case of an average magnetic field normal to the direction of 
propagation, the above effects result in flattening of a Taylor-shock profile. We now 
estimate the shock-front thickness using ( 5 5 )  and ( 5 6 ) :  

where veff is the effective collision frequency defined by the relation Veff = w B ~ ~ / ~ ~ T v ~ ~ ~  
Sakai 1972), v, is the front velocity, and vA is the Alfven velocity. Here we used the 
estimation k - 1 .  From the above expression we can see that the front thickness is 
greater by factor ( 1 + s) compared with the usual hydromagnetic shock wave. 

The author would like to express his gratitude to Mrs A. Casner and Mrs J. Clark 
for help rendered during the preparation of typing of this manuscript. 
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